Detection of Neutrinos from Micro-Quasars

M. E. Mosquera

Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Argentina

Introduction

- Micro-quasars are capable of accelerating particles to very high energy, and they are a source of high-energy neutrinos
- The detection of neutrinos from micro-quasar is important to investigate the composition of the jet (the jet should have relativistic hadrons and radiation or matter fields that provide target protons)
- The impact of neutrino oscillations on highly energetic neutrinos (1-200 TeV neutrinos) is very important

Neutrino detection

The neutrino signal in a km-scale detector like IceCube can be written as [1]

$$
S_{\nu_{\mu}}=\frac{T_{o b s} A_{e f f}}{4 \pi d^{2}} \int_{10^{3} \mathrm{GeV}}^{E_{\text {max }}} I_{\nu_{\mu}}\left(E_{\nu}\right) P\left(E_{\nu}\right) \mathrm{d} E_{\nu}
$$

where $T_{o b s}$ is the time observational period, $A_{\text {eff }}=10^{6} \mathrm{~m}^{2}$ is the effective area of the detector, d is the distance to the source, $I_{\nu_{\mu}}$ is the neutrino intensity, $E_{\nu}^{\max }$ is the maximum value of the neutrino-energy, and $P\left(E_{\nu}\right)$ is the probability that a neutrino of energy E_{ν} between $1-10^{3} \mathrm{TeV}$, on a trajectory in the detector, produces a muon [2]

$$
P\left(E_{\nu}\right)=1.3 \times 10^{-6}\left(\frac{E_{\nu}}{10^{3} \mathrm{GeV}}\right)^{0.8}
$$

Neutrino detection

The noise above 1 TeV is [1]

$$
R=\sqrt{T_{o b s} A_{e f f} \Delta \Omega \int_{10^{3} \mathrm{GeV}}^{E_{\nu}^{\max }} F_{B}\left(E_{\nu}\right) P\left(E_{\nu}\right) \mathrm{d} E_{\nu}}
$$

where $\Delta \Omega=3 \times 10^{-4} \mathrm{sr}$ is the solid angle of the search bin and $F_{B}\left(E_{\nu}\right)$ is the flux of atmospheric neutrinos [3]

$$
F_{B}\left(E_{\nu}\right)=2\left(\frac{E_{\nu}}{\mathrm{GeV}}\right)^{-3.21} \mathrm{MeV}^{-1} \mathrm{~m}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1}
$$

The signal-to-noise ratio is

$$
\Omega=S_{\nu} / R=T_{o b s}^{1 / 2} \Omega(T=1 \text { year })
$$

Neutrino detection

We performed the calculations using three models for the neutrino intensity [4]

$$
\frac{I_{\nu_{\gamma}}\left(E_{\nu}\right)}{\mathrm{GeV}^{-1} \mathrm{~S}^{-1}}=a_{\gamma}\left(\frac{E_{\nu}}{\mathrm{GeV}}\right)^{-\Gamma} e^{-E_{\nu} / E_{\nu}^{\max }}
$$

where a_{γ} is a constant and Γ is the index of the power-law of the proton spectrum,

$$
\frac{I_{\nu_{\gamma}}\left(E_{\nu}\right)}{\mathrm{GeV}^{-1} \mathrm{~s}^{-1}}=b_{\gamma}\left(\frac{E_{\nu}}{\mathrm{GeV}}\right)^{-\Gamma}
$$

where b_{γ} is a constant

Neutrino detection

and [1]

$$
I_{\nu}\left(E_{\nu}, \psi, \theta\right)=4 \int \mathrm{~d} V \frac{f_{p}}{m_{p}} \rho_{w}\left(r_{w}\right) q_{\gamma}\left(\psi, 2 E_{\nu}, z, \theta\right)
$$

where $f_{p}=0.1$ takes into account particle-rejection from the boundary, $q_{\gamma}(\psi, E, z, \theta)$ is the gamma-ray emissivity (this quantity takes into account the cross section for $p p$ reactions and the proton flux in the observer frame) and $\rho_{w}\left(r_{w}\right)$ is the mass density of the wind

$$
\rho_{w}\left(r_{w}\right)=\frac{\dot{M}_{\star}}{4 \pi v_{\infty} r_{w}^{2}}\left(1-\frac{R_{\star}}{r_{w}}\right)^{-\beta}
$$

where \dot{M}_{\star} is the mass losing rate, v_{∞} is the terminal velocity of the wind and r_{w} is the radial coordinate from the star If we consider neutrino oscillations the function I_{ν} can be written as
$I_{\nu}=I_{\nu_{\mu}} P_{\mathrm{osc}}^{\nu_{\mu} \nu_{\mu}}+I_{\nu_{e}} P_{\mathrm{osc}}^{\nu_{e} \nu_{\mu}}$

Neutrino oscillations

Light neutrino mass eigenstates: $\left|\nu_{1}\right\rangle,\left|\nu_{2}\right\rangle,\left|\nu_{3}\right\rangle$
Neutrino flavor states: $\left|\nu_{e}\right\rangle,\left|\nu_{\mu}\right\rangle,\left|\nu_{\tau}\right\rangle$

$$
\left(\begin{array}{l}
\left|\nu_{e}\right\rangle \\
\left|\nu_{\mu}\right\rangle \\
\left|\nu_{\tau}\right\rangle
\end{array}\right)=U\left(\begin{array}{l}
\left|\nu_{1}\right\rangle \\
\left|\nu_{2}\right\rangle \\
\left|\nu_{3}\right\rangle
\end{array}\right)
$$

The mixing matrix is written $\left(c_{i j}\left(s_{i j}\right)\right.$ represents $\cos \theta_{i j}\left(\sin \theta_{i j}\right)$ and $\theta_{i j}$ is the mixing angle between the mass eigenstates i and j)

$$
U=\left(\begin{array}{ccc}
c_{13} c_{12} & s_{12} c_{13} & s_{13} \\
-s_{12} c_{23}-s_{23} s_{13} c_{12} & c_{23} c_{12}-s_{23} s_{13} s_{12} & s_{23} c_{13} \\
s_{23} s_{12}-s_{13} c_{23} c_{12} & -s_{23} c_{12}-s_{13} s_{12} c_{23} & c_{23} c_{13}
\end{array}\right)
$$

Neutrino oscillations

The oscillation probability $P_{\alpha \beta}=\left|\left\langle\nu_{\alpha}(t) \mid \nu_{\beta}\right\rangle\right|^{2}$ (considering $\theta_{13}=0$)

$$
\begin{aligned}
& P_{v a c}^{\nu_{\mu} \nu_{\mu}}\left(E_{\nu}\right)=1-\sin ^{2} 2 \theta_{12} \cos ^{4} \theta_{23} \sin ^{2} \delta_{12}-\sin ^{2} \theta_{12} \sin ^{2} 2 \theta_{23} \sin ^{2} \delta_{13} \\
& -\cos ^{2} \theta_{12} \sin ^{2} 2 \theta_{23} \sin ^{2} \delta_{23} \\
& P_{v a c}^{\nu_{\mu} \nu_{e}}\left(E_{\nu}\right)=\cos ^{2} \theta_{23} \sin ^{2} 2 \theta_{12} \sin ^{2} \delta_{12} \\
& P_{v a c}^{\nu_{\mu} \nu_{\tau}}\left(E_{\nu}\right)=-\frac{1}{4} \sin ^{2} 2 \theta_{12} \sin ^{2} 2 \theta_{23} \sin ^{2} \delta_{12}+\sin ^{2} \theta_{12} \sin ^{2} 2 \theta_{23} \sin ^{2} \delta_{13} \\
& +\cos ^{2} \theta_{12} \sin ^{2} 2 \theta_{23} \sin ^{2} \delta_{23} \\
& P_{v a c}^{\nu_{\tau} \nu_{e}}\left(E_{\nu}\right)=\sin ^{2} \theta_{23} \sin ^{2} 2 \theta_{12} \sin ^{2} \delta_{12} \\
& P_{v a c}^{\nu_{\tau} \nu_{\tau}}\left(E_{\nu}\right)=1-\sin ^{2} 2 \theta_{12} \sin ^{4} \theta_{23} \sin ^{2} \delta_{12}-\sin ^{2} \theta_{12} \sin ^{2} 2 \theta_{23} \sin ^{2} \delta_{13} \\
& -\cos ^{2} \theta_{12} \sin ^{2} 2 \theta_{23} \sin ^{2} \delta_{23} \\
& P_{v a c}^{\nu_{e} \nu_{e}}\left(E_{\nu}\right)=1-\sin ^{2} 2 \theta_{12} \sin ^{2} \delta_{12} \\
& \delta_{i j}=\frac{\Delta m_{i j}^{2} c^{4} d}{4 E_{\nu} \hbar c} \\
& \Delta m_{i j}^{2}=m_{i}^{2}-m_{j}^{2}
\end{aligned}
$$

Neutrino oscillations

For three flavors we adopt the best fit parameters obtained by the analysis of experimental data [5, 6, 7]

$$
\begin{aligned}
\Delta m_{12}^{2} & =7.65 \times 10^{-5} \mathrm{eV}^{2} \\
\sin ^{2} \theta_{12} & =0.304 \\
\Delta m_{31}^{2} & \simeq \Delta m_{32}^{2}=2.40 \times 10^{-3} \mathrm{eV}^{2} \\
\sin ^{2} \theta_{23} & =0.5
\end{aligned}
$$

Neutrino oscillations

The evolution equation of the neutrino states [8],

$$
\imath \frac{\mathrm{d} \nu_{f}}{\mathrm{~d} t}=\left(\frac{U M^{2} U^{\dagger}}{2 E}+V\right) \nu_{f}
$$

where $M^{2}=\operatorname{diag}\left(0, \Delta m_{12}^{2}, \Delta m_{13}^{2}\right), V=\operatorname{diag}\left(V_{e}, 0,0\right)$, $V_{e}=\sqrt{2} G_{F} N_{e}(r), G_{F}$ is the Fermi constant and $N_{e}(r)$ is the Earth electron density.
After performing a rotation in θ_{23} (to the base $\widetilde{\nu}=\left(\nu_{e}, \widetilde{\nu}_{2}, \widetilde{\nu}_{3}\right)$), $\widetilde{\nu}_{3}$-state decouples form the rest of the system and evolves independently [8]

Neutrino oscillations

We parametrized the Earth matter density as [9]

$$
N_{j}(x)=\alpha_{j}^{\prime}+\beta_{j}^{\prime} x^{2}+\gamma_{j}^{\prime} x^{4}
$$

where x is the trajectory coordinate and the sub-index j represent the shell
The trajectory coordinate in each shell is written as
$x_{j}=R_{\oplus} \sqrt{r_{j}^{2}-\sin ^{2} \eta}$

Neutrino oscillations

Finally [10],

$$
\begin{aligned}
P_{2}= & \frac{4 \sin ^{2} 2 \theta_{12}}{\omega(L)^{2}}\left(\frac{\Delta m_{12}^{2}}{4 E_{\nu}}\right)^{2} \\
& \times\left(\sin \psi_{L}-\omega(L) \sum_{i=1}^{4} \frac{\omega\left(x_{i}^{+}\right)-\omega\left(x_{i}^{-}\right)}{\omega\left(x_{i}^{-}\right) \omega\left(x_{i}^{+}\right)} \sin 2 \psi_{i}\right)^{2} \\
\psi(x)= & \int_{0}^{x} \mathrm{~d} y \omega(y) \\
\omega(x)= & \sqrt{\left(\frac{V_{e}(x)}{2}-\frac{\Delta m_{12}^{2}}{4 E_{\nu}} \cos 2 \theta_{12}\right)^{2}+\left(\frac{\Delta m_{12}^{2}}{4 E_{\nu}}\right)^{2} \sin ^{2} 2 \theta_{12}}
\end{aligned}
$$

Neutrino oscillations

The survival and conversion probabilities can be calculated by [8]

$$
\begin{aligned}
& P_{\oplus}^{\nu_{e} \nu_{e}}=1-P_{2} \\
& P_{\oplus}^{\nu_{e} \nu_{\mu}}=\cos ^{2} \theta_{23} P_{2} \\
& P_{\oplus}^{\nu_{e} \nu_{\tau}}=\sin ^{2} \theta_{23} P_{2} \\
& P_{\oplus}^{\nu_{\tau} \nu_{\mu}}=\frac{1}{2} \sin ^{2} 2 \theta_{23}\left(1-\frac{1}{2} P_{2}-\sqrt{1-P_{2}} \cos \phi\right) \\
& P_{\oplus}^{\nu_{\mu} \nu_{\mu}}=1-\cos ^{4} \theta_{23} P_{2}-\frac{1}{2} \sin ^{2} 2 \theta_{23}\left(1-\sqrt{1-P_{2}} \cos \phi\right)
\end{aligned}
$$

where $\phi=\frac{\Delta m_{13}^{2}}{2 E} L, L=2 R_{\oplus} \cos \eta$ is the total length of the neutrino trajectory inside the Earth

given by $I_{\nu_{\gamma}}\left(E_{\nu}\right)=a_{\gamma}\left(\frac{E_{\nu}}{\operatorname{GeV}}\right)^{-\Gamma} e^{-E_{\nu} / E_{\nu}^{\max }}$

Contours plots of the constants a_{μ} and a_{e} (neutrino signal-to-noise ratio of 1).
Red line: without including oscillations
Green line: neutrino oscillations effects incorporated

Results obtained using the model

$$
\text { given by } I_{\nu_{\gamma}}\left(E_{\nu}\right)=b_{\gamma}\left(\frac{E_{\nu}}{\mathrm{GeV}}\right)^{-\Gamma}
$$

Contours plots of the constants b_{μ} and b_{e} (neutrino signal-to-noise ratio of 1).
Red line: without including oscillations
Green line: neutrino oscillations effects incorporated

Results obtained using the model given by $I_{\nu}\left(E_{\nu}\right)=4 \int \mathrm{~d} V f_{p} m_{p}^{-1} \rho_{w} q_{\gamma}$

Neutrino signal-to-noise ratio as a function of the viewing angle θ and $\eta=30^{0}$
Green line: no neutrino oscillations
Red line: only vacuum neutrino oscillation
Blue line: neutrino oscillation (vacuum and matter effects)

Results obtained using the model given by $I_{\nu}\left(E_{\nu}\right)=4 \int \mathrm{~d} V f_{p} m_{p}^{-1} \rho_{w} q_{\gamma}$

Neutrino signal-to-noise ratio as a function of the terminal velocity,
$\theta=30^{\circ}$ and $\eta=30^{\circ}$
Green line: no neutrino oscillations
Red line: only vacuum neutrino oscillation
Blue line: neutrino oscillation (vacuum and matter effects)

Results obtained using the model given by $I_{\nu}\left(E_{\nu}\right)=4 \int \mathrm{~d} V f_{p} m_{p}^{-1} \rho_{w} q_{\gamma}$

Neutrino signal-to-noise ratio as a function of the mass losing rate,
$\theta=30^{\circ}$ and $\eta=30^{\circ}$
Green line: no neutrino oscillations
Red line: only vacuum neutrino oscillation
Blue line: neutrino oscillation (vacuum and matter effects)

Conclusions

- If neutrino oscillations are included in the calculations, the quantities a_{μ} and b_{μ} should be increased by a factor 3 , to obtain the same signal to noise ratio
- The signal-to-noise ratio is suppressed by neutrino oscillations
- The inclusion of the neutrino oscillation increases the observable time by a factor of the order of 5
- If these neutrinos are detected, constrains on astrophysical parameters, such as the total jet power, the compact object accretion rate, the terminal wind velocity among others, can be obtained

References

[1] H. R. Christiansen et al., Phys. Rev. D 73, (2006) 063012
[2] T. K. Gaisser et al., Phys. Rep. 258, (1995) 173
[3] P. Lipari, Astrop. Phys. 1, (1993) 399
[4] G. E. Romero and M. Orellana, A \& A 439, (2005) 237
[5] G. L. Fogli et al., Phys. Rev. D 78, (2008) 033010
[6] T. Schwetz et al., New J. Phys. 10, (2008) 113011
[7] M. Apollonio et al., Physics Letters B 466, (1999) 415
[8] O. L. G. Peres and A. Y. Smirnov, Phys. Lett. B 456, (1999) 204
[9] E. Lisi and D. Montanino, Phys. Rev. D 56, (1997) 1792
[10] E. K. Akhmedov et al., Phys. Rev. Lett. 95, (2005) 211801
[11] O. Civitarese and M. E. Mosquera, IJMPE 21, (2012) 1250085
[12] M. E. Mosquera and O. Civitarese, IJMPE 21, (2012) 1250086

