

Gamma-rays, neutrinos, and positrons from galactic jets

Gabriela S. Vila

gvila@iar-conicet.gov.ar http://fcaglp.unlp.edu.ar/~gvila/

Instituto Argentino de Radioastronomía (IAR-CONICET)
Grupo de Astrofísica Relativista y Radioastronomía (GARRA)

CTA Link Meeting – Buenos Aires, November 2012

Microquasars: X-ray binaries with relativistic jets

Some characteristics of the jets

Mildly relativistic

$$\Gamma_{\text{jet}}\approx$$
 2 - 10

Typical luminosity

$$L_{\rm jet} = 10^{36-40} \text{ erg s}^{-1}$$

• Typical length $\ell_{\mathsf{jet}} \leq 1$ pc

\sim 20 known microquasars in the Galaxy

+1 MQ (\$26) in NGC 7793

Microquasars emit at all wavelengths

Microquasars emit at all wavelengths

Microquasars emit at all wavelengths

High-mass MQs (Cygnus X-1 & Cygnus X-3)

many unidentified sources (HESS, Fermi, AGILE, Swift)

Mechanisms of gamma-ray emission

High-mass MQs

Interaction of relativistic particles in the jets with

- matter in the wind
- the radiation field

Low-mass MQs

Interaction of relativistic particles in the jets with

- magnetic field
- matter
- radiation

companion star

internal to the jet

Mechanisms of gamma-ray emission

High-mass MQs

Interaction of relativistic particles in the jets with

- matter in the wind
- the radiation field

companion star

Low-mass MQs

Interaction of relativistic particles in the jets with

- magnetic field
- matter
- radiation

internal to the jet

Jet content of relativistic particles

- Largely unknown. For sure relativistic electrons (synchroton emission).
- If the jet is fed from accretion flow there could be protons as well. Evidence from Doppler-shifted iron lines in the MQ SS 433 (e.g. Migliari et al. 2002).

We adopt the prescription

$$L_{\text{rel}} = q L_{\text{jet}}$$
 $L_{\text{rel}} = L_e + L_p$ $L_p = aL_e$ $a \ge 1$

a≈100 typical CR composition

Diffusive shock acceleration

- Power-law energy distribution of accelerated particles $n(E) \propto E^{-\alpha}$ $\alpha \sim 1.4 2.4$
- Acceleration rate $t^{-1} \propto B \; E^{-1}$ $B \sim 10^5 10^6 \; \mathrm{G}$

Relativistic particles lose energy and radiate by interacting with matter, photons, and the magnetic field in the jet

Relativistic Bremsstrahlung

$$q + N \rightarrow q + N$$

Inverse Compton effect (IC)

$$q + \gamma \rightarrow q + \gamma$$

Synchrotron radiation

$$q + B \rightarrow q + B + \gamma$$

Relativistic protons have other efficient cooling channels

Proton-proton inelastic collisions (pp)

$$p + p \longrightarrow p + p + a\pi^{0} + b(\pi^{+} + \pi^{-})$$

• Proton-photon inelastic collisions (p γ)

$$p + \gamma \longrightarrow p + a\pi^{0} + b(\pi^{+} + \pi^{-})$$
$$p + \gamma \longrightarrow p + e^{-} + e^{+}$$

Radiation
$$\pi^0 \to \gamma + \gamma$$

$$e^\pm(\mu^\pm)(\pi^\pm) + B \to e^\pm(\mu^\pm)(\pi^\pm) + B + \gamma$$

$$\begin{array}{ll} \text{Charged} & \pi^\pm \to \mu^\pm + v_\mu(\bar{v}_\mu) \\ \text{particles} & \\ \text{and neutrinos} & \mu^\pm \to e^\pm + v_e(\bar{v}_e) + v_\mu(\bar{v}_\mu) \end{array}$$

Cooling and acceleration rates and maximum energies

$$E_{\rm max} \approx 0.1 - 5 \, {\rm GeV}$$

Protons

$$E_{\rm max} \approx 10^2 - 10^4 \, {\rm TeV}$$

Espectral energy distributions (SEDs)

The efficiency of hadronic processes to produce gamma-rays depends on the content of electrons in the jet and their radiation at lower energies

Gamma-ray absorption by photon-photon annihilation $\gamma + \gamma \rightarrow e^- + e^+$

- The leptonic content also determines the importance of gamma-ray absorption
- Jets highly absorbed in gamma-rays may be strong neutrino sources

Gamma-ray absorption by photon-photon annihilation $\gamma + \gamma \rightarrow e^- + e^+$

- The leptonic content also determines the importance of gamma-ray absorption
- Jets highly absorbed in gamma-rays may be strong neutrino sources

GX 339-4 (\geq 6 M $_{\odot}$ BH + \leq M $_{\odot}$ star at d \geq 6 kpc)

X-ray transient (months in outburst after years in quiescence)

High X-ray luminosity state $L_{\rm X} \approx L_{\rm Edd}$

Different sets of parameters approximately reproduce the observed SED

GX 339-4 (\geq 6 M $_{\odot}$ BH + \leq M $_{\odot}$ star at d \geq 6 kpc) X-ray transient (months in outburst after years in quiescence)

Low X-ray luminosity state $L_{\rm X} \approx 10^{-3} L_{\rm Edd}$

Different sets of parameters approximately reproduce the observed SED

XTE J1118+480 (\approx 8.5 M $_{\odot}$ BH + 0.37 \approx M $_{\odot}$ star at d \geq 1.72 kpc) X-ray transient (months in outburst after years in quiescence)

Vila et al. (2012)

Neutrinos are a product of hadronic interactions

If the π^{\pm} and μ^{\pm} are very energetic they may cool substantially before decaying

Cooling of π^{\pm} and μ^{\pm} reduces the emission of very high-energy neutrinos

Detection of neutrinos from MQs is still difficult, but not impossible with the new telescopes

Spatial distribution of annihilation line at 511 keV as seen by INTEGRAL-SPI

Diffuse (no point sources detected), no variability

Bright central bulge + extended disk ($|I| < 200^{\circ}$, $|b| < 10^{\circ}$)

Bulge-to disc flux ratio $\approx 0.25 - 0.7 (1.7 - 2.1)$

Positron production (annihilation) rate $\approx 1.1 - 0.8 \times 10^{43} \text{ s}^{-1}$

Winkler et al. (2011)

Bouchet et al. (2010)

Different origins for the e⁺e⁻ have been proposed

- Annihilation or decay of dark matter
- Pulsars and magnetars
- Ancient nearby gamma-ray bursts
- β^+ decay of nuclei (e.g. ²⁶Al, ⁴⁴Ti) from SNR and massive stars
- Galactic center blak hole
- MICROQUASARS

Low-mass MQs and the annihilation line 511 keV emission

Interesting possibility since...

- spatial distribution of low-mass XRB \sim observed distribution of 511 keV line
- several mechanisms of pair production in the jets (but also in the corona)

Some general estimations from global energetics and population analysis

• $\gamma + \gamma \rightarrow e^+e^-$ in the inner disk; pairs channeled by the jet into the ISM (Guessoum et al. 2006).

Assume "canonical" value $\dot{N}_{e^+} \approx 10^{41}~{\rm s}^{-1}~{\rm for~a~single~MQ}$

 \implies enough if ~ 100 MQs in the Galaxy (reasonable)

■ Summed emission from \sim 300-3000 low-mass XRB with very low luminosity lepto-hadronic jets (Bandyopadhyay et al. 2008).

$$\implies \dot{N}_{e^+ \text{ total}} \approx 10^{43} \text{ s}^{-1}$$

An estimation of the e⁺e⁻ production rate in the MQ GX 339-4

$$\begin{array}{ll} p+\gamma\to\pi^\pm\to\mu^\pm\to e^\pm \\ p+p\to\pi^\pm\to\mu^\pm\to e^\pm \\ \hline \\ \gamma+\gamma\to e^++e^- \end{array} \qquad \begin{array}{ll} \dot{N}_{e^\pm}\approx\frac{L_{e^\pm}}{2\Gamma_{\rm jet}\bar{\gamma}_{e^\pm}m_ec^2} \\ \hline \\ \bar{\gamma}_{e^\pm}\sim\Gamma_{\rm jet}=2 \end{array} \qquad {\rm Heinz} \; (2008)$$

Depending on the model parameters we obtain

Low luminosity X-ray state
$$\dot{N}_{e^\pm} \approx 10^{38}~{\rm s}^{-1}$$
 - $10^{42}~{\rm s}^{-1}$ X-ray state

If there are ≥100 low-mass XRB in the Galaxy, and most of them probably MQs...

⇒ the added e⁺e⁻ production rates might account for the observed 511 keV emission

Some conclusions

- The radiation from jets in microquasars likely covers the whole electromagnetic spectrum.
- At low energies (from radio to probably X-rays) the emission is of leptonic origin, whereas at high and very high energies models predict it originates in proton interactions.
- Highly absorbed sources in gamma-rays may be strong neutrino emitters.
- Charged secondaries might contribute to the SED in some cases. Cooling of these particles must be considered when calculating neutrino emissivities.
- Detailed models predict that detection of neutrinos from MQs is presently difficult.
- MQs might contribute significantly to the injection of electron-positron pair that yield the
 511 keV line emission detected by INTEGRAL.
- Observations at high and very high energies will be fundamental to improve models, and reveal the composition of jets in MQs among other unknowns.